Author(s):
Kamel Mokhnache, Ahlem Karbab, EL-Khamsa Soltani, Soraya Madoui, Hanane Khither, Noureddine Charef, Lekhmici Arrar
Email(s):
kamelmokhnache@yahoo.com
DOI:
10.5958/2321-5844.2020.00004.7
Address:
Kamel Mokhnache*, Ahlem Karbab, EL-Khamsa Soltani, Soraya Madoui, Hanane Khither, Noureddine Charef, Lekhmici Arrar
Laboratory of Applied Biochemistry, University Ferhat Abbas Setif 1, 19000, Algeria
*Corresponding Author
Published In:
Volume - 11,
Issue - 1,
Year - 2020
ABSTRACT:
A new isatin-hydrazone (IH) was selected for theoretical and experimental studies. The HOMO and LUMO energies were investigated using density functional theory (DFT) via B3LYP/6-31G (d,p), skin sensitization prediction was carried out using Pred Skin software program. The results demonstrate the reactivity of IH with Energy gap (?) of 0.0579 a.u, low sensitizer effect towards human skin with probability of 60 %, and an excellent topical anti-inflammatory effect against xylen-induced ear odema in mice model with inhibition percentages of 81.48%.
Cite this article:
Kamel Mokhnache, Ahlem Karbab, EL-Khamsa Soltani, Soraya Madoui, Hanane Khither, Noureddine Charef, Lekhmici Arrar. Experimental and Computational methods for skin sensitization evaluation of isatin-hydrazone. Research J. Topical and Cosmetic Sci. 2020; 11(1):15-19. doi: 10.5958/2321-5844.2020.00004.7
Cite(Electronic):
Kamel Mokhnache, Ahlem Karbab, EL-Khamsa Soltani, Soraya Madoui, Hanane Khither, Noureddine Charef, Lekhmici Arrar. Experimental and Computational methods for skin sensitization evaluation of isatin-hydrazone. Research J. Topical and Cosmetic Sci. 2020; 11(1):15-19. doi: 10.5958/2321-5844.2020.00004.7 Available on: https://rjtcsonline.com/AbstractView.aspx?PID=2020-11-1-4
REFERENCES:
5. M.J. Frisch, G.W. Trucks, H.B. Schlegel,
G.E. Scuseria, M.A. Robb, J.R. Cheeseman, et al., Gaussian 09, Revision A.02,
Gaussian, Inc., Wallingford CT, 2009.
6. J.B. Foresman, A. Frisch, Exploring
Chemistry with Electronic Structure Methods, Gaussian, Pittsburg, Pa, USA,
1995.
7. L. Pauling, The Nature of the Chemical Bond,
Cornell University Press, Ithaca, NY, USA, 1960.
8. P. Senet, Chemical hardnesses of atoms and
molecules from frontier orbitals, Chemical Physics Letters. 275 (1997)
527–532.
9.
R.G.
Parr, R.G. Pearson, Absolute hardness: companion parameter to absolute
electronegativity, Journal of the American chemical society. 105 (1983) 7512–7516.
10. Z. Bouanane, M. Bounekhel, M. Elkolli, F.
Abrigach, M. Khoutoul, R. Bouyala, R. Touzani, A. Hellal, Synthesis, structural,
catecholase, tyrosinase and DFT studies of pyrazoloquinoxaline derivatives, Journal of Molecular
Structure. 1139 (2017) 238–246.
11. R.C. Braga, V.M. Alves, E.N. Muratov, J.
Strickland, N. Kleinstreuer, A. Trospsha, C.H. Andrade. Pred-Skin: A Fast and
Reliable Web Application to Assess Skin Sensitization Effect of Chemicals. Journal of Chemical
Information and Modeling. 57 (2017) 1013–1017.
12. Q. Ouyang, L. Wang, Y. Mu, X.Q. Xie,
Modeling skin sensitization potential of mechanistically hard-to-be-classified
aniline and phenol compounds with quantum mechanistic properties, BMC Pharmacol.
Toxicol. 76 (2014) 1-9.
13. C. Couteau, L. Coiffard, Overview of skin
whitening agents: drugs and cosmetic products, Cosmetics 27 (2016) 1-16.
14. Kamel Mokhnache, Noureddine
Charef, Soraya Madoui, Mohammad S. Mubarak. Drug
Classification and Acute Rodent Toxicity Predictions of Bis-Phenolic Ligand: As
A Topical Anti-Inflammatory and Antifungal Agent. GSJ. 6 (2018) 636-647
15. Nagi MN, Mansour MA (2000). Protective
Effect of Thymoquinone against Doxorubicininduced Cardiotoxicity in Rats: A
Possible Mechanism of Protection. Pharmacological Research. 41: 283–289.